22 research outputs found

    Plasticity in dormancy behaviour of Calanoides acutus in Antarctic coastal waters

    Get PDF
    Copepods that enter dormancy, such as Calanoides acutus, are key primary consumers in Southern Ocean food webs where they convert a portion of the seasonal phytoplankton biomass into a longer-term energetic and physiological resource as wax ester (WE) reserves. We studied the seasonal abundance and lipid profiles of pre-adult and adult C. acutus in relation to phytoplankton dynamics on the Western Antarctic Peninsula. Initiation of dormancy occurred when WE unsaturation was relatively high, and chlorophyll a (Chl a) concentrations, predominantly attributable to diatoms, were reducing. Declines in WE unsaturation during the winter may act as a dormancy timing mechanism with increased Chl a concentrations likely to promote sedimentation that results in a teleconnection between the surface and deep water inducing ascent. A late summer diatom bloom was linked to early dormancy termination of females and a second spawning event. The frequency and duration of high biomass phytoplankton blooms may have consequences for the lifespan of the iteroparous C. acutus females (either 1 or 2 years) if limited by a total of two main spawning events. Late summer recruits, generated by a second spawning event, likely benefitted from lower predation and high phytoplankton food availability. The flexibility of copepods to modulate their life-cycle strategy in response to bottom-up and top-down conditions enables individuals to optimize their probability of reproductive success in the very variable environment prevalent in the Southern Ocean

    Characterization and temperature dependence of Arctic Micromonas polaris viruses

    Get PDF
    Global climate change-induced warming of the Artic seas is predicted to shift the phytoplankton community towards dominance of smaller-sized species due to global warming. Yet, little is known about their viral mortality agents despite the ecological importance of viruses regulating phytoplankton host dynamics and diversity. Here we report the isolation and basic characterization of four prasinoviruses infectious to the common Arctic picophytoplankter Micromonas. We furthermore assessed how temperature influenced viral infectivity and production. Phylogenetic analysis indicated that the putative double-stranded DNA (dsDNA) Micromonas polaris viruses (MpoVs) are prasinoviruses (Phycodnaviridae) of approximately 120 nm in particle size. One MpoV showed intrinsic differences to the other three viruses, i.e., larger genome size (205 ± 2 vs. 191 ± 3 Kb), broader host range, and longer latent period (39 vs. 18 h). Temperature increase shortened the latent periods (up to 50%), increased the burst size (up to 40%), and affected viral infectivity. However, the variability in response to temperature was high for the different viruses and host strains assessed, likely affecting the Arctic picoeukaryote community structure both in the short term (seasonal cycles) and long term (global warming)

    Summer microbial community composition governed by upper-ocean stratification and nutrient availability in northern Marguerite Bay, Antarctica

    Get PDF
    The Western Antarctic Peninsula warmed significantly during the second half of the twentieth century, with a concurrent retreat of the majority of its glaciers, and marked changes in the sea-ice field. These changes may affect summertime upper-ocean stratification, and thereby the seasonal dynamics of phytoplankton and bacteria. In the present study, we examined coastal Antarctic microbial community dynamics by pigment analysis and applying molecular tools, and analysed various environmental parameters to identify the most important environmental drivers. Sampling focussed on the austral summer of 2009–2010 at the Rothera oceanographic and biological Time Series (RaTS) site in northern Marguerite bay, Antarctica. The Antarctic summer was characterized by a salinity decrease (measured at 15 m depth) coinciding with increased meteoric water fraction. Maximum Chl-a values of 35 µg l-1 were observed during midsummer and mainly comprised of diatoms. Microbial community fingerprinting revealed four distinct periods in phytoplankton succession during the summer while bacteria showed a delayed response to the phytoplankton community. Non-metric multidimensional scaling analyses showed that phytoplankton community dynamics were mainly directed by temperature, mixed layer depth and wind speed. Both high and low N/P ratios might have influenced phytoplankton biomass accumulation. The bacterioplankton community composition was mainly governed by Chl-a, suggesting a link to phytoplankton community changes. High-throughput 16 S and 18 S rRNA amplicon sequencing revealed stable eukaryotic and bacterial communities with regards to observed species, yet varying temporal relative contributions. Eukaryotic sequences were dominated by pennate diatoms in December followed by polar centric diatoms in January and February. Our results imply that the reduction of mixed layer depth during summer, caused by meltwater-related surface stratification, promotes a succession in diatoms rather than in nanophytoflagellates in northern Marguerite Bay, which may favour higher trophic levels

    Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs

    Full text link
    Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    Microbial community dynamics governed by mixed layer depth during an austral summer in Ryder Bay, Antarctica

    Get PDF
    The Western Antarctic Peninsula is warming. As a result, summertime salinity stratification may occur more frequently due to enhanced glacial melt water input. The resulting changes in environmental conditions could affect the seasonal dynamics of phytoplankton and Bacteria. The aim of the present study was to examine the environmental characteristics that drive coastal Antarctic microbial community dynamics. Sampling was done at 15 m depth during the austral summer of 2010-2011 at the Rothera oceanographic and biological Time Series site (RaTS) in northern Marguerite bay, Antarctica. Environmental variables included salinity, temperature, density, irradiance, wind speed, major nutrients and δ18O, the latter indicative of fresh water origin. Phytoplankton biomass and group specific composition were followed using size fractionated Chl aand HPLC-CHEMTAX. Four different primer sets were used to study community changes using DGGE analysis: eukaryotes, diatoms, dinoflagellates and Bacteria. Salinity decrease during summer coincided with increased meteoric water input indicative of a glacial origin. Maximum Chl a values of 35 μg l-1 were found during midsummer, mainly consisting of diatoms. Analysis of DGGE patterns revealed four distinctly different periods in eukaryotic succession during the season. The Bacteria showed a delayed response to the phytoplankton community. Non-metric multidimensional scaling analysis showed that phytoplankton community dynamics were mainly directed by temperature, mixed layer depth and wind speed. The bacterioplankton community composition was mainly governed by Chl a, suggesting a link to phytoplankton community changes. Sequencing (MiSeq) results for eukaryotes and Bacteria showed a high similarity between January and February. Eukaryotic sequences were dominated by pennate diatoms in December follow by polar centric diatoms in January and February. Our results imply that the reduction of the mixed layer depth during summer, caused by melt water related surface stratification promotes a succession in diatoms rather than (nano)phytoflagellates in Ryder Bay, which may favour higher trophic levels
    corecore